The Use of Modern Silicon Cross-linking Moieties to Confer Water and Oil Repellency, Release and Protection Properties to Surfaces.

¹Bob, Ruckle, ²Tom-Seung, Cheung, and Yanjun Luo

Siltech Corporation Toronto, ON Canada ¹<u>Robert@siltech.com</u>, ²<u>tom2@siltech.com</u>,

A series of reactive Q and T resins, $Si(OR)_4$ and $R'(SiOR)_3$ based units respectively, are formulated with reactive silicone polymers. The systems are evaluated in various fabric, leather, or hard surface treatments primarily for water and oil repellency. Release and protection properties are also evaluated in basic coatings systems.

Agenda

- Brief Silicone Background
- Replacing PFAS?
- •ST and COF
- Hydrophobicity
- Oleophobicity
- •Stain Resistance
- •Chemical Resistance
- Conclusions

Silicon Nomenclature

The Road from Silicon to Silicone

Silicone Hybrid Chemistry

PFAS

EPA and ECHA are acting to heavily regulate compounds with \sim (CF₂)_n where n≥2 (EPA) or n≥1 (EU).

Timing is 2024 for EPA

• Lower Surface Tension/ Energy

COF Reduction

• Water Repellency

• Oil Repellency

Chemical Resistance

• Low Use Level

Many End Users are Attempting to Formulate These Out.

How Do PDMS Types Compare?

PFAS / PDMS

PFAS unique properties

ST 14-20 mN/m Water and Oil Repellency Chemical Stability.

PDMS based materials:

ST 20-30 mN/m Water Repellency Can we develop Oil Repellency?

- PDMS derivatives can achieve ST in the low 20 mN/m range
- The best PFAS based materials can achieve lower ST, down to 14 mN/m
- There is nothing between 14 and 20 to be wetted
- Use levels differ by a factor of about 10. Which is offset by higher dollar cost.

ST of PFAS Surfactants in Water

AdvancesinColloidandInterfaceScience210(2014)65–71

Silicone Surfactant ST in Water

Water Repellency

- •We have recently published work that shows we have multiple approaches to achieve 115° aqueous contact angle on glass.
 - Dialkyl Quats
 - DT Emulsions
 - T-Dx-T
 - DTQ Resins

Pendant Dialkyl Quaternium Silicone Structure

Sil(n): x+y Alkyl(n): R Are both variables. x/y ratio Pendant/linear Are minor variables at best

Glass Contact Angle: DiAlkyl Silicone Quats

DT Resin Emulsions

- •Emulsified MD_xM silicones
- •Alkoxy T groups
- •React when dried to form a crosslinked film.

Result WB DT Emulsions

~ 80°

Typically ~80°

Our belief is that the emulsifiers in these offset the inherent hydrophobic nature of the X-linked silicone network.

SB similar systems give 115°.

In real world examples these are commonly used and are highly cost effective and elegant in their simplicity.

Fiberglass Water Repellency: Film Forming Emulsions and TMS type

The emulsions add water repellency

Adding TMS types give a slight improvement

The TMS types alone give the best performance

TDxT

X=50 angle 107°

X=400 angle 115°

Contact Angle of TDxT Type Polymers on Glass

Water Pickup: Concrete Tiles

Marker Resistance: Al Panels W/ TDxT types

Marker resistance improved with higher MW

MDTQ Resins

AATCC 22 Standard Spray Test

QT Resins in Solvent

	Leather	Brown	Suede	Grey	Black
Contact	Benchmark	118°	142°	137°	145°
angle	80% QT resin/ silanol/ silane/ cat/ solvent	125°	143°	137°	141°
Correctoret	Benchmark	80	70	90	70
spray test score	80% QT resin/ silanol/ silane/ cat/ solvent	80	80	90	70

Suede

Glass Contact Angle QT Resins in Solvent

Sample	WCA	sliding angle		
Blank	84°	22°		
Benchmark	109°	6.5°		
YL7-143B	108°	27°		

108°

QT Resin Emulsions w/ Polysilazine

Sample	e Formulation	CA (°)	CA after rinse (°)	SA (°)	SA after rinse (°)	Durability
Commercial DIY "Ceramic" Car Care Product		111	111	41	40	5
30A	1% Polysilazine/ 0.5 % Aminosilicone 1/ 1% DTQ Resin/ 1% SILANE	110	109	35	34	4
36A	5% Polysilazine/0.5% Aminosilicone 2 / 1% QT resin / 1% SILANE/ 1% PDMS/ 1% Alkyl Silicone	115	113	44	38	4
42B	5% Polysilazine/ 0.5% Aminosilicone 2 / 11% % QT resin / 1% SILANE/ 1% Alkyl Silicone	110	110	25	25	5
42C	5% Polysilazine / 0.5% Aminosilicone 2 / 1% QT resin / 6% SILANE / 1% PDMS/ 1% Alkyl Silicone	114	114	35	33	5

QT Sol-Gel Experimental

- Prepare premixed samples based on various Siltech emulsions, best solgel sample (in ethanol), water, and glycol ethers.
- Prepare 10% dilution of these samples and coat on untreated cotton fabric
- Dry the cotton fabrics by using the following methods.
 - Heat 105°C oven for 4 hours or
 - Dried at RT for 7 days
- Measure contact angle, AATCC 22 spray test, and softness before and after rinsing with water.
- For samples that shows good AATCC 22 spray test result, perform AATCC 193 aqueous liquid repellency test.

AATCC 193

A: pass B: borderline rounded droplet C: fail wicking D: fail wetted

AATCC 193 Standard Test Liquids							
AATCC Aqueous Solution Repellency Grade (0-5 best)	Color	Water/IPA (vol/vol)	Surface Tension (mN/m)				
0	None	100:0	72				
1	Blue	98:2	59				
2	Pink	95:5	50				
3	Orange	90:10	42				
4	Yellow	80:20	33				
5	Dark Blue	70:30	28				

Sol-Gels of QT Resins (WB but no Emulsifier)

Sample	Description	AATCC 22 Rating	AATCC 193 Rating
Control	Commercial product	75	3
87F	Sol-gel base	70	na*
55A	Sol-gel + QT resin	70	na
39D	Sol-gel + QT + aminosilicone 1	70	2.5
59A	Sol-gel + QT + aminosilicone 2	70	3.5
187	QT resin emulsion	70	na
28A	Silane modified silicone emulsion	50	na
16A	QT resin emulsion (187) + 28A	60	na
16B	16A + DTQ resin emulsion	60	na
16C	16A + Amino film forming emulsion 1	60	na
16G	16A + Sol-gel base (87F)	60	na
41B	16A + Amino film forming emulsion 1	0	na
41C	16G + More 28A	60	na
41D	16A + Amino film forming emulsion 2	0	na
41E	16A + Phenyl DTQ resin emulsion	0	na
41F	16A + Amino MQ resin emulsion	60	na
41H	16A + Q resin emulsion	60	na

- Heat Curing not critical
 Dinging can show different
- Rinsing can show difference (esp. with emulsions)
- 39D and 59A are the best (mixed with aminosilicones)
- Probably better than 87F and 55A (sol-gel alone)

39D: Sol-gel / QT resin / aminosilicone #1

59A: Sol-gel / QT resin / aminosilicone #2

Sol-Gel QT Resins: Glass Contact Angle

sliding angle Sample **WCA** system Blank 84.2° 22° solvent-based silicone Benchmark 108.7° 6.5° 20° water-based 109.4° 55A 26° water-based 87.2° 87F 30° 105.3° water-based 59A water-based 114.3° 42.5° 39D

114°

Oleophobicity

- Early results here show several approaches with promise.
 - Film Forming DT Systems
 - T-Dx-T
 - Waxy SPE and Silicone Hydrocarbons
 - A new composition

Hydrophobicity: Water on Grout Plugs

Stain Resistance

Stains

Delta E data

MustardBalsamic vinegarDelta E

Red wine vinegarNespresso Coffee

KetchupSoya sauce

Silicone Waxes

Oleophobicity: Vegetable Oil on Cardboard

Oleophobicity: Vegetable Oil on Cardboard

A New Compound for UV: Beading MO

14

Close Up

Video

Dispense mineral oil on the coating

Video is 10X Speed

Chemical Resistance

1 H 1.008							2 He 4.002 6
3 Li 6.94	4 Be 9.012 2	5 B 10.81	6 C 12.01 1	7 N 14.00 7	8 0 15.99 9	9 F 18.99 8	10 Ne 20.18 0

- •PFAS compounds are very strongly bonded and resistant to acids, etc.
- PDMS based materials are very labile to acid/base hydrolysis.

• This is why they degrade in the environment.

- •Some unique species such as TQ resins are likely to be somewhat chemically resistant.
- •We are not going to be able to obtain the chemical stability of PFAS.

Conclusions

- Surface Tension of standard PDMS materials is the next best thing to PFAS and is good enough for nearly all applications.
- Water Repellency of 115° on glass is possible via multiple approaches of PDMS and related materials.
- Oleophobicity is plausible with some newer specialty silicon based materials.

BUT

• Chemical Resistance is Futile

