THE USE OF Q RESINS AND OTHER MODERN SILICON CROSSLINKING MOIETIES TO CONFER WATER REPELLENCY, RELEASE AND PROTECTION PROPERTIES TO FABRIC, LEATHER, HARD SURFACES AND COATINGS.

Bob Ruckle; Tom-Seung Cheung; & Yanjun Luo

Siltech Corporation Toronto, ON Canada Robert@siltech.com, <u>Tom2@siltech.com</u> +1 (416) 424 4567

Agenda

- Quick Silicone Background
- State of the Current Art
- •New Approaches
- Conclusions

Hypothesis

Highly cross linked silicon systems based on Q and T moieties will provide improved water repellency and protection.

The Road from Silicon to Silicone

Why Use Silicone Additives: PDMS Properties

- Free Radical Stability (O₂, O₃, Sunlight)
- Insulative (Electrical and Thermal)
- High Thermal Stability: 250°C
- Low Surface Tension: 20 mN/m
- Excellent Spreading & Wetting
- Minimal Interfacial Tension
- Low Coefficient of Friction
- Low T_{g:} 153°K: -120°C
- Low Odor & Toxicity
- Water Repellent
- Gas Permeable
- Incompatible

Affects other properties to differing degrees

To remedy incompatibility: react with an organic moiety

Silicone Hybrid Chemistry

Silicon Nomenclature

MD_xM is the standard formula for silicone

Experimental

- A series of reactive Q and T resin based formulations are evaluated for contact angle and water repellency.
- Contact angle is measured using the KRUSS MobileDrop GH11 Measuring system.
- Sliding angle is determined by the smallest inclination angle of a sample that causes a 50 μ L water droplet to start sliding.
- AATCC 22 and AATCC 193 methods are used to evaluated repellency on fabrics

AATCC 22 Standard Spray Test

Fabrics Used

AATCC 193

A: passB: borderline rounded dropletC: fail wickingD: fail wetted

AATCC 193 Standard Test Liquids						
AATCC Aqueous Solution Repellency Grade (0-5 best)	Color	Water/IPA (vol/vol)	Surface Tension (mN/m)			
0	None	100:0	72			
1	Blue	98:2	59			
2	Pink	95:5	50			
3	Orange	90:10	42			
4	Yellow	80:20	33			
5	Dark Blue	70.30	28			

Example Untreated Cotton

Existing Water Repellents Approaches (without C-F bonds)

• DiAlkyl Quat

D resin types with dialkyl quaternary ammonium chain

•Cured Film Forming Emulsions D and T resins with emulsifiers

Pendant Dialkyl Quaternium Silicone Structure

Sil(n): x+y Alkyl(n): R Are both variables. x/y ratio Pendant/linear Are minor variables at best

Glass Contact Angle

Reference	Sil (n)	Alkyl (n)	Architecture	(°)
Blank	na	na	na	65
Α	1	8	Pendant	83
В	1	12	Pendant	89
С	1	18	Pendant	90
D	3	1	Pendant	72
E	3	18	Pendant	84
F	8	1	Pendant	81
G	8	18	Pendant	96
Н	20	1	Pendant	81
	20	18	Pendant	94
J	150	1	Pendant	102
K	150	18	Pendant	107
L	300	1	Pendant	103
Μ	50	18	Linear	111
N	100	1	Linear	106
0	100	18	Linear	112
Ρ	400	18	Linear	100

Glass Contact Angle: DiAlkyl Silicone Quats

DT Resin Emulsions

- •Emulsified MD_xM silicones
- •Alkoxy T groups
- React when dried to form a crosslinked film.

Film Forming Emulsions (from 2018 presentation)

Inclination Angle- Water Repellency

~ ×

Result WB DT Emulsions

Our belief is that the emulsifiers in these materials is providing wetting which offsets the inherent hydrophobic nature of the X-linked silicone network.

X=0 angle 100° on glass

X=10 angle 103°

X=50 angle 107°

X=400 angle 115°

142° (on leather)

SB QT Resins vs. Commercial Benchmark

3 day R.T. cure + 1 hour @ 68		Test specimens				
		Brown	Suede	Grey Fabric	Black Fabric	
C	egree C	Leather	Leather	•		
¥	WCA	117.7°	142.2°	136.9°	144.6°	
Benchmai	Water droplet	rolls / leaves streaks	Wicks ~45s	rolls off	rolls off	
	WCA	124.7°	141.6°	136.9°	141.0°	
YL7-53B	Water droplet	rolls / leaves streaks	rolls off	rolls off	rolls off	

AATCC 22 Spray Test on Brown Leather

Benchmark water repellent Rating: 70 (ISO 3)	Siltech YL7-53B Rating: 80 (ISO 3)	
		Suede
Benchmark water repellent	Siltech YL7-53B	
Rating: 70 (ISO 3)	Rating: 70 (ISO 3)	

QT Resins in Solvent

	Leather	Brown	Suede	Grey	Black
Contact	Benchmark	118°	142°	137°	145°
angle	80% QT resin/ silanol/ silane/ cat/ solvent	125°	143°	137°	141°
Correctoret	Benchmark	80	70	90	70
Spray test score	80% QT resin/ silanol/ silane/ cat/ solvent	80	80	90	70

Glass Contact Angle QT Resins in Solvent

Sample	WCA	sliding angle
Blank	84°	22°
Benchmark	109°	6.5°
YL7-143B	108°	27°

SB QT Resins are better

- •The SB QT resins used are very similar to the film forming emulsions reported in 2018 but without emulsifier
- Performance is improved and comparable to commercial benchmark

QT Resin Emulsions w/ Polysilazine

Sample	e Formulation	CA (°)	CA after rinse (°)	SA (°)	SA after rinse (°)	Durability
Comme	ercial DIY "Ceramic" Car Care Product	111	111	41	40	5
30A	1% Polysilazine/ 0.5 % Aminosilicone 1/ 1% DTQ Resin/ 1% SILANE	110	109	35	34	4
36A	5% Polysilazine/0.5% Aminosilicone 2 / 1% QT resin / 1% SILANE/ 1% PDMS/ 1% Alkyl Silicone	115	113	44	38	4
42B	5% Polysilazine/ 0.5% Aminosilicone 2 / 11% % QT resin / 1% SILANE/ 1% Alkyl Silicone	110	110	25	25	5
42C	5% Polysilazine / 0.5% Aminosilicone 2 / 1% QT resin / 6% SILANE / 1% PDMS/ 1% Alkyl Silicone	114	114	35	33	5

Durability is determined by contact angle lost after rinsing under a 25°C flow of water for 1 minute.

QT Sol-Gel Experimental

- Prepare premixed samples based on various Siltech emulsions, best sol-gel sample (in ethanol), water, and glycol ethers.
- Prepare 10% dilution of these samples and coat on untreated cotton fabric
- Dry the cotton fabrics by using the following methods.
 - Heat 105°C oven for 4 hours or
 - Dried at RT for 7 days
- Measure contact angle, AATCC 22 spray test, and softness before and after rinsing with water.
- For samples that shows good AATCC 22 spray test result, perform AATCC 193 aqueous liquid repellency test.

Sol-Gels of QT Resins (WB but no Emulsifier)

Sample	Description	AATCC 22 Rating	AATCC 193 Rating
Control	Commercial product	75	3
87F	Sol-gel base	70	na*
55A	Sol-gel + QT resin	70	na
39D	Sol-gel + QT + aminosilicone 1	70	2.5
59A	Sol-gel + QT + aminosilicone 2	70	3.5
187	QT resin emulsion	70	na
28A	Silane modified silicone emulsion	50	na
16A	QT resin emulsion (187) + 28A	60	na
16B	16A + DTQ resin emulsion	60	na
16C	16A + Amino film forming emulsion 1	60	na
16G	16A + Sol-gel base (87F)	60	na
41B	16A + Amino film forming emulsion 1	0	na
41C	16G + More 28A	60	na
41D	16A + Amino film forming emulsion 2	0	na
41E	16A + Phenyl DTQ resin emulsion	0	na
41F	16A + Amino MQ resin emulsion	60	na
41H	16A + Q resin emulsion	60	na

AATCC 22 spray test result for heat cured and R.T. cured sample before and after rinse

- Heat Curing not critical
- Rinsing can show difference (esp. with emulsions)
- 39D and 59A are the best (mixed with aminosilicones)
- Probably better than 87F and 55A (sol-gel alone)

Benchmark SB water repellent coated AATCC 193 Grade 3

39D: Sol-gel / QT resin / aminosilicone #1 Siltech sample: TQ01-39D AATCC 193 Grade 2.5 59A: Sol-gel / QT resin / aminosilicone #2

Benchmark SB water repellent coated AATCC 193 Grade 3 Siltech sample: TQ01-59A AATCC 193 Grade 3.5

Sol-Gel QT Resins: Glass Contact Angle

system	Sample	WCA	sliding angle
	Blank	84.2°	22°
solvent-based silicone	Benchmark	108.7°	6.5°
water-based	55A	109.4°	20°
water-based	87F	87.2°	26°
water-based	59A	105.3°	30°
water-based	39D	114.3°	42.5°

Conclusions

Anchoring and inclusion of alkyl chains into a silicone formulation increases the hydrophobicity. Increasing the silicone chain length of the alkyl chain also increases the hydrophobicity.

Water/Glass Contact Angles of 115° are achieved with this approach.

This approach can be pricey, hard to formulate and has an alkyl "hand" but repellency and durability are maxed out.

Conclusions

SB QT resins improve performance over the DT emulsions (state of the art in 2018).

The additional crosslinking of the silicone backbone from the QT resins provides a strong increase in the hydrophobicity. Water/Fabric CA of 145° and Water/Glass CA of 108° is achieved.

As an added benefit, the silicone IPN provides softness, slip, and additional protections typically seen with low COF coatings.

Conclusions

TDxT systems discussed in 2018 gave Water/Glass CA of 115° and remain a great approach.

Waterborne systems are problematic: emulsifiers interfere with the hydrophobicity. To resolve this weakness, we have applied a unique sol-gel method.

This improved the water repellency of a SB benchmark. Water/Cotton Contact Angles of 143° and Water/Glass CA of 114° were achieved.

Thank You